Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610042

RESUMO

BACKGROUND: Sonodynamic therapy (SDT) has shown promise as a non-invasive cancer treatment due to its local effects and excellent tissue penetration. However, the limited accumulation of sonosensitizers at the tumor site hinders its therapeutic efficacy. Although nanosonosensitizers have improved local tumor accumulation through passive targeting via the enhanced permeability and retention effect (EPR), achieving sufficient accumulation and penetration into tumors remains challenging due to tumor heterogeneity and inaccurate targeting. Bacteria have become a promising biological carrier due to their unique characteristic of active targeting and deeper penetration into the tumor. METHODS: In this study, we developed nanosonosensitizers consisting of sonosensitizer, hematoporphyrin monomethyl ether (HMME), and perfluoro-n-pentane (PFP) loaded poly (lactic-co-glycolic) acid (PLGA) nanodroplets (HPNDs). These HPNDs were covalently conjugated onto the surface of Escherichia coli Nissle 1917 (EcN) using carbodiimine chemistry. EcN acted as an active targeting micromotor for efficient transportation of the nanosonosensitizers to the tumor site in triple-negative breast cancer (TNBC) treatment. Under ultrasound cavitation, the HPNDs were disrupted, releasing HMME and facilitating its uptakes by cancer cells. This process induced reactive oxygen species (ROS)-mediated cell apoptosis and immunogenic cell death (ICD) in vitro and in vivo. RESULTS: Our bacteria-driven nanosonosensitizer delivery system (HPNDs@EcN) achieved superior tumor localization of HMME in vivo compared to the group treated with only nanosonosensitizers. This enhanced local accumulation further improved the therapeutic effect of SDT induced-ICD therapeutic effect and inhibited tumor metastasis under ultrasound stimulation. CONCLUSIONS: Our research demonstrates the potential of this ultrasound-responsive bacteria-driven nanosonosensitizer delivery system for SDT in TNBC. The combination of targeted delivery using bacteria and nanosonosensitizer-based therapy holds promise for achieving improved treatment outcomes by enhancing local tumor accumulation and stimulating ICD.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Morte Celular Imunogênica , Apoptose , Bactérias , Glicóis
2.
Drug Deliv ; 31(1): 2300945, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38366562

RESUMO

Burn injuries are prevalent and life-threatening forms that contribute significantly to mortality rates due to associated wound infections. The management of burn wounds presents substantial challenges. Hydrogel exhibits tremendous potential as an ideal alternative to traditional wound dressings such as gauze. This is primarily attributed to its three-dimensional (3D) crosslinked polymer network, which possesses a high water content, fostering a moist environment that supports effective burn wound healing. Additionally, hydrogel facilitates the penetration of loaded therapeutic agents throughout the wound surface, combating burn wound pathogens through the hydration effect and thereby enhancing the healing process. However, the presence of eschar formation on burn wounds obstructs the passive diffusion of therapeutics, impairing the efficacy of hydrogel as a wound dressing, particularly in cases of severe burns involving deeper tissue damage. This review focuses on exploring the potential of hydrogel as a carrier for transdermal drug delivery in burn wound treatment. Furthermore, strategies aimed at enhancing the transdermal delivery of therapeutic agents from hydrogel to optimize burn wound healing are also discussed.


Assuntos
Queimaduras , Hidrogéis , Humanos , Hidrogéis/farmacologia , Cicatrização , Queimaduras/tratamento farmacológico , Bandagens , Sistemas de Liberação de Medicamentos
3.
RSC Adv ; 14(3): 1866-1874, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192324

RESUMO

Osseointegration remains one of the major challenges in the success of bone-related implants. Recently, polyetheretherketone (PEEK) has emerged as an alternative material in orthopedic and dental applications due to its bone-mimicking mechanical properties. However, its bioinertness resulting in poor osseointegration has limited its potential application. So, the surface modification of PEEK with bone morphogenetic protein-2 (BMP-2) can be a potential approach for improving osseointegration. In this study, we proposed the chemical modification of heparin onto PEEK through an environmentally benign method to exploit the BMP-2 binding affinity of heparin. The heparin was successfully functionalized on the PEEK surface via a combination of ozone and UV treatment without using organic solvents or chemicals. Furthermore, BMP-2 was efficiently immobilized on PEEK and exhibited a sustained release of BMP-2 compared to the pristine PEEK with enhancement of bioactivity in terms of proliferation as well as osteogenic differentiation of MG-63. The significant synergistic effect of BMP-2 and heparin grafting on osteogenic differentiation of MG-63 was observed. Overall, we demonstrated a relatively safe method where no harsh chemical reagent or organic solvent was involved in the process of heparin grafting onto PEEK. The BMP-2 loaded, heparin-grafted PEEK could serve as a potential platform for osseointegration improvement of PEEK-based bone implants.

4.
ACS Appl Mater Interfaces ; 16(3): 3031-3041, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224063

RESUMO

This research presents a simple but general method to prepare water-soluble-polymer-based superabsorbent hydrogels with predefined microscale geometries and controlled swelling properties. Unlike conventional hydrogel preparation methods based on bulk solution-phase cross-linking, poly(vinyl alcohol) is homogeneously mixed with polymer-based cross-linkers in the solution phase and thermally cross-linked in the solid phase after drying; the degree of cross-linking is modulated by controlling the cross-linker concentration, pH, and/or thermal annealing conditions. After the shape definition process, cross-linked films or electrospun nanofibers are treated with sulfuric acid to weaken hydrogen bonds and introduce sulfate functionality in polymer crystallites. The resultant superabsorbent hydrogels exhibit an isotropic expansion of the predefined geometry and tunable swelling properties. Particularly, hydrogel microfibers exhibit excellent optical transparency, good biocompatibility, large porosity, and controlled cell adhesion, leading to versatile 3D cell culture scaffolds that not only support immortalized cell lines and primary neurons but also enable stiffness-modulated cell adhesion studies.

5.
Carbohydr Polym ; 280: 119026, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027128

RESUMO

Cell microencapsulation is a process to entrap viable and functional cells within a biocompatible and semi-permeable matrix to provide a favorable microenvironment to the cells. Cellulose nanofiber (CNF), a low-cost and sustainable cellulose-derived natural polymer, has been studied as a matrix for 3D stem cell culture in the form of a bulk hydrogel. Here, the preparation of CNF microbeads for the long-term 3D culture of human adipose-derived stem cells (hADSCs) was demonstrated. Furthermore, hyaluronic acid (HA) was physically incorporated into the stem cell encapsulated CNF microbeads with various molecular weights and concentrations to investigate its potential in enhancing the cellular bioactivities. The beneficial effects of HA incorporation on encapsulated cells were significant compared to CNF microbeads, especially with 700 kDa molecular weight and 0.2% in concentration in terms of cell proliferation (~2 times) and VEGF secretion (~2 times) while maintaining their stemness. All the results demonstrated that the HA-incorporated CNF microbeads could serve as a promising microencapsulation matrix for hADSCs.


Assuntos
Encapsulamento de Células , Celulose , Ácido Hialurônico/química , Células-Tronco Mesenquimais/fisiologia , Microesferas , Nanofibras , Adipogenia , Técnicas de Cultura de Células , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Hidrogéis , Células-Tronco Mesenquimais/citologia , Peso Molecular , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
ACS Appl Mater Interfaces ; 10(29): 24431-24439, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29953811

RESUMO

Cell aggregates hold significant therapeutic promise for in vitro cell analysis, ex vivo tissue models, and in vivo cell therapy and tissue engineering. Traditional methods of making cell aggregates require long incubation times and can only produce three-dimensional-spheroid-shaped aggregates. We propose a novel method of making cell aggregates of diverse sizes and shapes using lipid-conjugated heparin. Shaking the cell suspension containing a small amount of lipid-conjugated heparin for approximately 30 min produced cell aggregates. This approach can be applied to any cell type, including stem cells, fibroblast cells, and T lymphocytes. The shape of biocompatible templates could modulate the shape of cell aggregates. In addition to layered, multicompartmental cell aggregates on template, template-free, tube-shaped cell aggregates could also be made. The cell aggregates formed were alive and maintained biological activities.


Assuntos
Lipídeos/química , Agregação Celular , Fibroblastos , Heparina , Engenharia Tecidual
7.
Biomaterials ; 165: 94-104, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525265

RESUMO

A micropatterned heparin-based hydrogel system that can provide sustained release of multiple growth factors upon one time loading was prepared via photopolymerization and lithography and it was employed as a culture matrix for differentiating hADSCs into hepatic lineage. Mature differentiation of hADSCs into hepatic lineage in terms of gene expression and immunofluorostaining of hepatic markers, and functional characteristics such as glycogen storage ability and production of albumin and urea was observed on the soft hydrogel (∼400 Pa) when the gel elasticity was modulated. This optimal heparin-based hydrogel was used to prepare micropatches containing hepatic-differentiated cells by 1) micropatterning of the gel on a polyelectrolyte multilayer (PEM), 2) seeding of hADSCs and inducing hepatic differentiation, and 3) electrochemical retrieval of cell-attached micropatches. Upon i.v. injection, the retrieved cell micropatches showed a prolonged retention in the liver and promoted function compared to single cell injection in a rat model. In conclusion, this injectable and detachable miropatterned heparin-based hydrogel system could serve as a total platform for the stem cell differentiation under well-controlled microenvironment in vitro and for targeted delivery of the differentiated cells in vivo.


Assuntos
Fígado , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Células Cultivadas , Heparina , Humanos , Hidrogéis/química , Fígado/citologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
8.
Carbohydr Polym ; 174: 990-998, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821157

RESUMO

In this study, by combining photopolymerization and particle leaching technique, in situ formation of porous hydrogel with pore interconnectivity was demonstrated in vivo upon subcutaneous injection into the back of mice as well as in vitro. A precursor solution containing thiolated heparin, PEG-diacrylate (PEG-DA), and gelatin microparticles (GMPs) as a fast dissolving porogen were photopolymerized by visible-light-initiated thiol-ene reaction with eosin Y (EY) as a photo initiator and triethanolamine (TEOA) as a co-initiator. Formation of porous structure of the hydrogel after subsequent leaching of GMPs was confirmed in an animal model as well as in a physiological environment. The physical characteristics of the hydrogel were analyzed, and the acute in vivo biocompatibility of this system was characterized.

9.
Carbohydr Polym ; 147: 251-260, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27178931

RESUMO

A heparin-based hydrogel sheet composed of thiolated heparin and diacrylated poly (ethylene glycol) was prepared via photo polymerization and human epidermal growth factor (hEGF) were loaded into it for the purpose of wound healing. It showed a sustained release profile of hEGF in vitro. In order to evaluate its function on wound healing in vivo, full thickness wounds were created on the dorsal surface of mice. Application of hEGF loaded heparin-based hydrogel sheet accelerated the wound closure compared to the non-treated control group, hEGF solution, and hEGF loaded PEG hydrogel sheet. Histological and immunohistological examinations also demonstrated an advanced granulation tissue formation, capillary formation, and epithelialization in wounds treated by hEGF loaded heparin-based hydrogel compared to other groups, and no biocompatibility issue was observed. In conclusion, the delivery of hEGF using the heparin-based hydrogel could accelerate the skin wound healing process.


Assuntos
Família de Proteínas EGF/metabolismo , Heparina/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Família de Proteínas EGF/química , Camundongos , Polietilenoglicóis/química , Pele/efeitos dos fármacos , Pele/lesões , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...